
Journal of Applied Mechanics and Technical Physics, Vol. 42, No. 2, pp. 345–351, 2001

EFFECT OF INITIAL IMPERFECTIONS ON THE

FLEXURAL EIGENVIBRATIONS OF CYLINDRICAL SHELLS

UDC 539.3:534.1N. A. Taranukha and G. S. Leizerovich

The effect of small initial deviations from the ideal circular shape of a shell on the frequencies
and modes of flexural eigenvibrations is studied with the use of the linear theory of thin shallow
shells. It is assumed that the initial deviations are responsible for interaction between flexural
and radial vibrations of the shell. The modal equations are derived by the Bubnov–Galerkin
method. It is shown that the initial deviations from the ideal circular shape split the flexural
vibration spectrum, and the fundamental frequency decreases compared to that of the ideal shell.

Introduction. In manufacturing shells, small initial deviations from the ideal shape, which are also
called the initial imperfections, are inevitable. As a rule, these deviations are described by the function w0(x, y)
(w0 is the distance between the points on the middle surfaces of the real and ideal shells). It is well known that
the function w0(x, y) strongly affects the stability of shells. The initial imperfections also affect the vibrations
of shells, in particular, their eigenfrequencies which, like the critical loads, are the integral characteristics of
rigidity.

Despite the fact that the effect of the parameter w0(x, y) on the flexural vibrations of shells has been
studied in many papers, some fundamental problems still remain unsolved. It is believed that the initial
deviations from the ideal circular shape increase the fundamental frequency compared to the case of an ideal
shell [1–3]. However, this conclusion is in doubt. In the presence of the deviation w0(x, y), the resistance of
the shell decreases, which implies that the fundamental frequency must decrease rather than increase.

The aim of this study is to clarify the above-mentioned contradiction and obtain a new solution that
describes the effect of initial imperfections on the flexural eigenvibrations of thin-walled cylindrical shells.

Equations of Motion. Let a simply supported cylindrical shell of radius R, length l, and thickness h
perform small flexural vibrations. The mathematical model is based on known equations of the linear theory
of thin-walled shallow shells which have the following form [4] for an isotropic imperfect shell:

1
E
∇4Φ = −L(w0, w)− 1

R

∂2w

∂x2
,

D

h
∇4w = L(w0,Φ) +

1
R

∂2Φ
∂x2

− ρ ∂
2w

∂t2
. (1)

Here ∇4 is the Laplace operator, w(x, y, t) is the radial dynamic deflection which is positive when directed
toward the axis of the shell, Φ(x, y, t) is a stress function, D = Eh3/(12(1− µ2)) is the flexural rigidity of the
shell, E is Young’s modulus, µ is Poisson’s ratio, ρ is the density, t is the time, and L = ∂2/∂2x(∂2/∂y2) +
∂2/∂y2(∂2/∂x2)− 2∂2/∂x ∂y(∂2/∂x ∂y) is the differential operator.

In determining the integral characteristics of vibrations, in particular, the lower eigenfrequencies of thin
isotropic shells, Eqs. (1) based on the Kirchhoff–Love hypothesis give results close to experimental data [2, 4].

Traditional Solution. For an ideal shell, each point on the circumference can be a vibration node.
Experiments have shown that the initial imperfections eliminate this uncertainty and lead to interaction
between the conjugate flexural modes [1, 2]. Generally, the location of the nodes of these modes does not
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depend on the way of exciting the shell and is determined by the function w0(x, y). Therefore, it is generally
believed that in the linear formulation, the dynamic deflection of an imperfect shell can be described in the
first approximation by the expression [2]

w(x, y, t) = h[a1(t) sin(βy) + a2(t) cos(βy)] sin(αx) (α = π/l, β = n/R). (2)

The conjugate flexural modes sin(βy) sin(αx) and cos(βy) sin(αx) in (2) are the eigenmodes of the ideal shell
and correspond to the same wave parameter n. It is known that these modes of the ideal shell correspond to
the same eigenfrequency.

Let the shell have initial imperfections that correspond to the character of the wave formation upon
its flexural vibrations:

w0(x, y) = h[a10 sin(βy) + a20 cos(βy)] sin(αx). (3)

We first solve the problem using the traditional finite-dimension model (2). Substituting (2) and (3)
into the first equation in (1), we obtain an inhomogeneous differential equation whose solution yields a function
that determines the dynamic stresses in the middle surface of the imperfect shell:

Φ = E[Φ0 sin(αx) sin(βy) + Φ1 sin(αx) cos(βy) + Φ2 sin(βy) + Φ3 cos(βy)

+ Φ4 cos(2αx) sin(βy) + Φ5 cos(2αx) cos(βy) + Φ6 sin(αx) + Φ7 cos(2αx)

+ Φ8 sin(2βy) + Φ9 cos(2βy) + Φ01x
2/2 + Φ02xy + Φ03y

2/2]. (4)

The first ten coefficients in (4), which correspond to a particular solution of the differential equation, are given
by
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hα2

R(α2 + β2)2
a1, Φ1 =

hα2

R(α2 + β2)2
a2, Φ2 = −h

2α2

2β2
a10a3, Φ3 = −h

2α2

2β2
a20a3,
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h2α2β2

2(4α2 + β2)2
a10a3, Φ5 =

h2α2β2

2(4α2 + β2)2
a20a3, Φ6 =

h

α2R
a3, (5)

Φ7 =
h2β2

16α2
(a10a1 + a20a2), Φ8 = −h

2α2

16β2
(a10a2 + a20a1), Φ9 =

h2α2

16β2
(a10a1 − a20a2),

where a3(t) ≡ 0 for the traditional solution. The last three terms in (4) enter the general integral of the
equation ∇4Φ = 0. As in [2, 3], these terms make it possible to satisfy “on average” the tangential boundary
conditions

1
2πR

2πR∫
0

σx dy =
1

2πR

2πR∫
0

τ dy = 0 for x = 0, x = l, (6)

where σx = ∂2Φ/∂y2 and τ = −∂2Φ/∂x ∂y are the normal and shear stresses, respectively.
Using the continuity condition for the circumferential displacement v(x, y, t)
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0
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)
+
w

R
− ∂w0

∂y

∂w
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]
dy = 0 (7)

and boundary conditions (6), we find Φ01 = h2β2(a10a1 + a20a2)/4 and Φ02 = Φ03 = 0.
Substituting (2)–(4) into the second equation in (1) and employing the Bubnov–Galerkin method, we

obtain the equations

ä1 + c11a1 + c12a10a20a2 = 0, ä2 + c21a10a20a1 + c22a2 = 0, (8)

where the dots denote differentiation with respect to the dimensionless time τ = λt (λ is the eigenfrequency),
and the coefficients are given by
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c11 = 1 +
ε

8ω2
[(3 + θ4)a2

10 + θ4a2
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ε

8ω2
[(3 + θ4)a2

20 + θ4a2
10],

(9)
c12 = c21 =

3ε
8ω2

, ε =
(n2h

R

)2

, θ =
πR

nl
.

The squared dimensionless eigenfrequency of flexural vibrations of the ideal circular cylindrical shell is
determined from the formula

ω2 =
ρ

E
R2λ2 =

ε(1 + θ2)2

12(1− µ2)
+

θ4

(1 + θ2)2
.

Equations (8) are similar to those given in [2]. However, the coefficients (9) differ from those of [2],
since the solution obtained in [2] does not satisfy the continuity condition for the displacement v(x, y, t) (7).

The frequency equation following from (8) determines two eigenfrequencies. Their squared values are

Ω2
01 k = (ω01 k/ω)2 = 1 + εθ4(a2

10 + a2
20)/(8ω2),

(10)
Ω2

02 k = (ω02 k/ω)2 = Ω2
01 k + 3ε(a2

10 + a2
20)/(8ω2),

where the subscript k denotes the traditional solution.
Thus, the initial imperfection (3) splits the flexural frequency spectrum of the shell. A frequency

mismatch also occurs when one of the amplitudes of the initial imperfections vanishes. The first formula in
(10) implies that the deviation w0(x, y) increases the fundamental frequency compared to the case of an ideal
shell. This was also inferred in [2, 3]. However, this conclusion is wrong, which, in our opinion, is a result of
the improper approximation of the dynamic deflection (2). Relation (2) does not describe the decrease in the
generalized flexural rigidity of the shell because of the presence of initial deviations from a circular shape.

It is noteworthy that, for θ → 0, i.e., in the limiting case of an infinitely long imperfect shell (a ring
under conditions of plane strain), formulas (10) are similar to those of [5]:

Ω2
01 k = 1, Ω2

02 k = 1 + 9(1− µ2)(a2
10 + a2

20)/2. (11)

According to (11), the lower eigenfrequency Ω01 k of an infinitely long shell does not depend on the deviation
w0(x, y), whereas the frequency Ω02 k exceeds severalfold the fundamental frequency of the ideal shell for a
resulting amplitude of initial imperfections being of the order of the shell thickness.

New Solution. We refine the traditional finite-dimension model (2). It is assumed that owing to the
initial deviations from a circular shape, not only the conjugate flexural modes interact, but also the nodes
of these modes can shift in the radial direction. In other words, it is assumed that the deviation w0(x, y) is
responsible for coupled flexural–radial vibrations (for an ideal shell, these vibrations are independent of one
another). In (2), we introduce the additional coordinate a3(t) corresponding to the radial mode of vibration:

w(x, y, t) = h[a1(t) sin(βy) + a2(t) cos(βy) + a3(t)] sin(αx). (12)

To compare models (2) and (12), we solve the problem with the tangential boundary conditions satisfied
“on average.” Substituting (3) and (12) into (1) and solving equations of the shallow shell theory according
to the scheme proposed by P. F. Papkovich, we arrive at the modal equations

ä1 + c11a1 + c12a10a20a2 + c13a10a3 = 0,
(13)

ä2 + c21a10a20a1 + c22a2 + c23a20a3 = 0, ä3 + c31a10a1 + c32a20a2 + c33a3 = 0,

where the coefficients c11, c22, and c12 = c21 are determined from (9), and the other coefficients are given by

c33 =
1
ω2

{
1 +

εθ4

12(1− µ2)
+
εθ4

8

[
2 +

1
(1 + 4θ2)2

]
(a2

10 + a2
20)
}
,

c13 = c23 = −8ε1/2

3πω2

[
1 +

θ4

(1 + 4θ2)2

]
, c31 = c32 = −4ε1/2

3πω2

[
1 +

θ4

(1 + θ2)2

]
.

The insignificant deviation from the symmetry c13 6= 2c31 and c23 6= 2c32 is due to the fact that the tangential
boundary conditions are satisfied “on average.” The symmetry would occur if these conditions were satisfied
exactly.
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Fig. 1. Squared flexural eigenfrequency of the shell versus the initial-imperfection amplitude: curve 1 refers to
the new solution Ω2

01, curve 2 refers to the solution for the ideal shell (Ω2), curve 3 refers to the new (Ω2
02) and

traditional (Ω2
01 k) solutions, and curve 4 refers to the traditional solution Ω2

02 k.

From the frequency equation following from (13), we find three eigenfrequencies: Ω01 < 1 < Ω02 � Ω03.
The first two eigenfrequencies correspond to the essentially flexural vibrations of the imperfect shell, and
the third eigenfrequency refers to the essentially radial vibrations. The squared second eigenfrequency is
determined exactly:

Ω2
02 = 1 + εθ4(a2

10 + a2
20)/(8ω2). (14)

It should be noted here that Ω02 = Ω01 k.
Discussion of Results. Figure 1 shows the squared flexural eigenfrequency of the shell with the

parameters l/R = 0.6 and R/h = 200 versus the amplitude of the initial imperfection a10 (a20 = 0). The
calculations were performed for the number of circumferential waves n = 10 and Poisson’s ratio µ = 0.3.
Curve 2 (Ω2 = 1) refers to the squared frequency of the ideal shell. Curves 1 and 3 refer to the new solutions
Ω2

01 and Ω2
02, respectively. For comparison, Fig. 1 shows the squared frequencies Ω2

01 k = Ω2
02 (curve 3) and

Ω2
02 k (curve 4) calculated by formulas (10) corresponding to the traditional model (2). It is clear from Fig. 1

that in the new solution, the difference between the eigenfrequencies of the essentially flexural vibrations
of thin-walled shells is insignificant, which is supported by experimental data [1]. Owing to the fact that
the frequencies Ω01 and Ω02 are close, an intense energy exchange between the conjugate modes occurs. In
contrast, the traditional solution shows a significant eigenfrequency mismatch. It is also noteworthy that in
contrast to the traditional solution, the new solution shows that the fundamental frequency of the imperfect
shell is lower than that of the ideal shell.

For relatively long imperfect shells (for θ < 0.5), from the frequency equation one can obtain the
following approximate expression for the squared fundamental frequency:

Ω2
01 ≈ Ω2

02[1− 3ε(a2
10 + a2

20)/8]. (15)

Formula (15) implies that as the amplitude of the initial imperfections increases, their effect on the fundamental
frequency becomes more pronounced.

In the limiting case of an infinitely long imperfect shell, formulas (14) and (15) become Ω2
01 ≈ 1 −

3ε(a2
10 + a2

20)/8 and Ω2
02 = 1, respectively, i.e., they are similar to those given in [5].

The frequency of the essentially radial vibrations of the shell Ω03 increases with the amplitude of
imperfections.

The Effect of the Formulation of Boundary Conditions. It is known that in the case of an
ideal shell of finite length, the satisfaction of the tangential boundary conditions “on average” leads to a
considerable error in determining its dynamic characteristics. The tangential boundary conditions also have
an effect on the vibrations of shells with initial imperfections. However, this effect has not been studied in
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detail because of the complexity of the problem. In this paper, we consider the following four variants of
tangential boundary conditions with the use the refined finite-dimensional model (12):

σx = τ = 0, σx = v = 0, u = τ = 0, u = v = 0 for x = 0, x = l. (16)

These conditions are assumed to be the same at the ends and they are satisfied exactly.
Substituting (3) and (12) into the first equation of (1), we obtain a differential equation from which

the following stress function Φ is determined:

Φ = E{Φ0 sin(αx) sin(βy) + Φ1 sin(αx) cos(βy) + Φ2 sin(βy) + Φ3 cos(βy) + Φ4 cos(2αx) sin(βy)

+ Φ5 cos(2αx) cos(βy) + Φ6 sin(αx) + Φ7 cos(2αx) + Φ8 sin(2βy) + Φ9 cos(2βy) + Φ01x
2/2

+ Φ02xy + Φ03y
2/2 + [Φ10cosh(βx) + Φ11sinh(βx) + Φ12βx sinh(βx) + Φ13βx cosh(βx)] sin(βy)

+ [Φ20cosh(βx) + Φ21sinh(βx) + Φ22βx sinh(βx) + Φ23βx cosh(βx)] cos(βy)

+ [Φ30cosh(2βx) + Φ31sinh(2βx) + Φ322βx sinh(2βx) + Φ332βx cosh(2βx)] sin(2βy)

+ [Φ40cosh(2βx) + Φ41sinh(2βx) + Φ422βx sinh(2βx) + Φ432βx cosh(2βx)] cos(2βy)}. (17)

The first ten coefficients in (17) are calculated from formulas (5), and the other coefficients are determined
depending on the variant of tangential boundary conditions (16).

For σx = τ = 0, we obtain

Φ01 = 4α2Φ7, Φ02 = Φ03 = 0, Φ10 = −(Φ2 + Φ4),

Φ11 =
1

βl + sinh(βl)

{
[1− cosh(βl)]Φ10 −

α

β
βlΦ0

}
,

Φ12 =
1

βl + sinh(βl)

{
− sinh(βl)Φ10 +

α

β
[1 + cosh(βl)]Φ0

}
,

Φ13 =
1

βl + sinh(βl)

{
− [1− cosh(βl)]Φ10 −

α

β
sinh(βl)Φ0

}
,

Φ20 = −(Φ3 + Φ5), Φ21 =
1

βl + sinh(βl)

{
[1− cosh(βl)]Φ20 −

α

β
βlΦ1

}
,

Φ22 =
1

βl + sinh(βl)

{
− sinh(βl)Φ20 +

α

β
[1 + cosh(βl)]Φ1

}
,

Φ23 =
1

βl + sinh(βl)

{
− [1− cosh(βl)]Φ20 −

α

β
sinh(βl)Φ1

}
,

Φ30 = −Φ8, Φ31 =
1− cosh (2βl)

2βl + sinh (2βl)
Φ30,

Φ32 = − sinh (2βl)
2βl + sinh (2βl)

Φ30, Φ33 = − 1− cosh (2βl)
2βl + sinh (2βl)

Φ30,

Φ40 = −Φ9, Φ41 =
1− cosh (2βl)

2βl + sinh (2βl)
Φ40,

Φ42 = − sinh (2βl)
2βl + sinh (2βl)

Φ40, Φ43 = − 1− cosh (2βl)
2βl + sinh (2βl)

Φ40.
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Fig. 2. Squared lower frequency of the shell versus the initial-imperfection amplitude: curve 1 refers to Ω2
01στ for

the boundary conditions σx = τ = 0, curve 2 to Ω2
01σv for σx = v = 0, curve 3 to Ω2

01 for the integral boundary
conditions (6), curve 4 to Ω2

01uτ for the boundary conditions u = τ = 0, and curve 5 to Ω2
01uv for u = v = 0.

The coefficients for the other variants of the tangential boundary conditions at the ends of the shell have
cumbersome expressions and here we omit them.

Substituting (3), (12), and (17) into the second equation of (1) and using the Bubnov–Galerkin method,
we obtain equations similar to Eqs. (13). In these equations, the coefficients for σx = τ = 0 are given by

c11 = 1− 8θ7

πω2(1 + θ2)4

cosh(π/θ) + 1
sinh (π/θ) + π/θ

+
ε

8ω2

[
(3 + θ4)a2

10 + θ4a2
20 −

2θ5

π

cosh (2π/θ)− 1
sinh (2π/θ) + 2π/θ

(a2
10 + a2

20)
]
,

c22 = 1− 8θ7

πω2(1 + θ2)4

cosh(π/θ) + 1
sinh (π/θ) + π/θ

+
ε

8ω2

[
(3 + θ4)a2

20 + θ4a2
10 −

2θ5

π

cosh (2π/θ)− 1
sinh (2π/θ) + 2π/θ

(a2
10 + a2

20)
]
,

c33 =
p2

ω2
+
εθ4

8ω2

[
2 +

1
(1 + 4θ2)2

− 512θ5(1 + 2θ2)2

π(1 + 4θ2)4

cosh (π/θ)− 1
sinh (π/θ) + π/θ

]
(a2

10 + a2
20),

c13 = − 8ε0.5

3πω2

{
1 +

θ4

(1 + θ2)2
+

3θ8

(1 + θ2)2(1 + 4θ2)

[
1− 4(1 + 2θ2)

1 + 4θ2

sinh (π/θ)
sinh (π/θ) + π/θ

]}
,

c12 = c21 =
3ε

8ω2
, c23 = c13, c31 =

1
2
c13, c32 =

1
2
c23, p2 = 1 +

εθ4

12(1− µ2)
.

For the tangential boundary conditions denoted by the subscripts i and j, we find three dimensionless
eigenfrequencies from the frequency equation: Ω01 ij < Ω02 ij � Ω03 ij . The first two frequencies correspond
to essentially flexural vibrations of the shell with the deviation w0(x, y), and the third frequency corresponds
to essentially radial vibrations.

Figure 2 shows the squared lower dimensionless eigenfrequency of the shell with the parameters l/R =
0.6 and R/h = 200 versus the amplitude of initial imperfections a10 (a20 = 0). Calculations were performed
for the number of circumferential waves n = 10 and Poisson’s ratio µ = 0.3. Curve 1 refers to the squared
frequency Ω2

01στ for the boundary conditions σx = τ = 0, curve 2 to Ω2
01σv for σx = v = 0, curve 3 to Ω2

01
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for the integral boundary conditions (6), the curve 4 to Ω2
01uτ for the boundary conditions u = τ = 0, and

the curve 5 to Ω2
01uv for u = v = 0. One can see from Fig. 2 that, for the given parameters of the shell, the

satisfaction of the tangential boundary condition “on average” leads to a considerable error in determining
its dynamic characteristics. For all the variants of tangential boundary conditions, the initial imperfections
decrease the fundamental frequency compared to the case of an ideal shell.

The calculation results show that, for a shell of relative length θ > 0.3 whose ends can displace in
the axial direction with and without imperfections, the satisfaction of the tangential boundary condition “on
average” leads to significant overestimation of the exact values of the lower frequencies of essentially flexural
vibrations. For the zero axial displacement of the ends, the satisfaction of the tangential boundary conditions
“on average” leads to a considerable error even for θ > 0.2. In this case, the exact values of the frequencies
are underestimated.

Conclusions. It has been found that the initial deviations from the circular shape of a cylindrical
shell significantly affect its flexural eigenfrequencies and lead to coupling of the conjugate flexural modes and
interaction between the flexural and radial vibrations. The frequency spectrum is split, and the fundamental
frequency decreases rather than increases compared to the case of an ideal shell.

The satisfaction of the tangential boundary conditions decreases the error in predicting the resonance
conditions which can occur when a real shell is excited by external periodic or other dynamic loads.

In this paper, the effect of the initial imperfections on the eigenfrequencies has been estimated only
preliminarily and qualitatively, since the solution of the problem is obtained in the first approximation.
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